

Yellowfin ®

Release 7

Clustering Guide

Under international copyright laws, neither the documentation nor the software may be copied, photocopied,

reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part,

without the prior written permission of Yellowfin International Pty Ltd, except in the manner described in the

software agreement.

The information in this document is subject to change without notice. If you find any problems with this

documentation, please report them to Yellowfin in writing at support@yellowfin.com.au. Yellowfin does not

warrant that this document is error free.

Copyright © Yellowfin International 2014 All rights reserved.

Portions © Copyright Microsoft Corporation. All rights reserved.

Trademarks:

Yellowfin and the Yellowfin Logo are registered trademarks of Yellowfin International.

All other product and company names mentioned herein are the trademarks of their respective owners.

Version: 1.3

Published: February 2014

Yellowfin Clustering Overview .. 4

Application Level Messaging ... 4

Container Level Session Replication .. 5

Yellowfin Database Clustering .. 6

Licensing .. 6

Installing a Yellowfin Cluster ... 7

File System Replication ... 7

Reinstallation... 7

Yellowfin for Application Messaging ... 8

Modifications to web.xml .. 10

web.xml file parameters .. 11

Background Tasks ... 13

System Tasks ... 13

Task Scheduler .. 13

Container Level Session Replication .. 14

Caveats ... 14

Modifications to web.xml .. 15

Modifications to server.xml ... 15

Modifications to ROOT.xml ... 17



Yellowfin can be clustered on multiple servers to allow for high-availability and load-balancing.

The actual load-balancing (multiplexing requests from external requests) can be achieved with a

hardware load-balancer, or load-balancing software. This guide will outline the modifications

required to Yellowfin's configuration to enable clustering, but not the external environment that

multiplexes the incoming requests.

It is required that the load-balancing infrastructure delivers network traffic to the Yellowfin

application server transparently, as if the packets were connecting directly to the application

server directly. If Session Replication is not enabled, the load-balancing infrastructure will need to

provide “sticky-session” functionality, where traffic for a user’s session should be sent to the same

node.

Yellowfin supports clustering at 2 levels:

1. Application

2. Container

Yellowfin will communicate with other nodes when application wide messages need to be sent.

This communicates messages like refreshing caches, and logging out concurrent users. This is

controlled by a background servlet in Yellowfin that will communicate with other nodes.

Yellowfin also has cluster safe webservice calls, which allows a webservice Single-Sign-On request

to come from an application to any cluster node, and return a token id. The token id will then be

valid on any node that the token id is sent to.

The Yellowfin application has also been written to allow user session information to be replicated

onto multiple cluster nodes concurrently. User session information is the memory footprint that is

stored on the server for each user session. Enabling Session Replication allows for the users

session to continue, even if the cluster node they were connected to experiences a failure.

Without Session Replication, failure of a cluster node will destroy a users session, and they will

need to login again to another node.

Session Replication is a function of the Java Container. An example of how this can be achieved

with Tomcat will be discussed in this document.

A Yellowfin Cluster must share a single Yellowfin Database instance. The database could be a

single database instance, that is shared across all Yellowfin nodes, or a database that is clustered

itself. It is assumed that database clustering / replication is done by the client, as every database

implements this in a different way. Database Clustering / Replication should be transparent to

Yellowfin, as Yellowfin will have a single database URL for the entire cluster.

The Yellowfin Licence file is stored in the Yellowfin database, and because of this, the Licence must

contain a reference to all hostnames in the cluster. A clustered licence can be requested from

Yellowfin.

As a Yellowfin Cluster requires only one database instance, it means that the Yellowfin Installation

process will differ slightly when installing a cluster.

The first Yellowfin Cluster node can be installed the same as standalone instance of Yellowfin. The

command-line or GUI installer can be used.

Additional Yellowfin Cluster nodes do not require the Yellowfin database. There are two options

to options for installing additional nodes:

Assuming that the file system structure on each node is the same, a new node can be created by

duplicating the Yellowfin installation directory onto another computer. The only change required

to each node, are changes to the web.xml file which is discussed later in this document.

After the initial node is installed, and the Yellowfin database is created, the Yellowfin installer can

be used for the installation of subsequent nodes, however, this process will create additional

Yellowfin databases. The installer can be allowed to create these databases, but these can be

removed once the installation process is finished. Each node's web.xml can then be modified to

point to the database created with the first nodes installation.

Each Yellowfin node must have the ClusterManagement servlet enabled for the node to become

“Cluster Aware”. The ClusterManagement servlet is enabled by adding an additional configuration

block to the web.xml file on each node.

The Application Messaging is performed using webservices, allowing different nodes to initiate

cache clearing or changes to licensing details.

Yellowfin inter-node messaging is now handled by a highly configurable multicast library called

JGroups. Using this method will automatically find other nodes in the cluster sharing the same

Yellowfin database.

Dynamic mode also allows for multiple cluster instances to run on the same server.

The default configuration of JGroups uses UDP multicast messages to determine group

membership and find new nodes. There may be environments where these types of messages can

not be sent. For example, Amazon does not allow multicast packets on its internal network

between nodes. The Multicast Cluster Messaging adapter allows you to pass a XML configuration

file to configure JGroups to use other methods for node discovery. This file can be referenced by

passing the path to the BroadcastConfiguration servlet parameter within the ClusterManagement

servlet.

Yellowfin’s legacy cluster messaging is handled by AXIS webservices. This requires that all nodes

be defined at startup, and that the service end-point, port, user and password be defined in each

node’s web.xml file. Legacy mode does not allow cluster instances to reside on the same host.

The following servlet definition needs to be added to the web.xml on each node:

<!-- Cluster Management -->

<servlet>

 <servlet-name>ClusterManagement</servlet-name>

 <servlet-class>com.hof.mi.servlet.ClusterManagement</servlet-class>

 <init-param>

 <param-name>ClusterType</param-name>

 <param-value>DYNAMIC</param-value>

 </init-param>

 <init-param>

 <param-name>SerialiseWebserviceSessions</param-name>

 <param-value>true</param-value>

 </init-param>

 <init-param>

 <param-name>CheckSumRows</param-name>

 <param-value>true</param-value>

 </init-param>

 <init-param>

 <param-name>EncryptSessionId</param-name>

 <param-value>true</param-value>

 </init-param>

 <init-param>

 <param-name>EncryptSessionData</param-name>

 <param-value>true</param-value>

 </init-param>

 <load-on-startup>11</load-on-startup>

</servlet>

The following servlet definition needs to be added to the web.xml on each node:

<!-- Cluster Management -->

<servlet>

 <servlet-name>ClusterManagement</servlet-name>

 <servlet-class>com.hof.mi.servlet.ClusterManagement</servlet-class>

 <init-param>

 <param-name>ServiceUser</param-name>

 <param-value>admin@yellowfin.com.au</param-value>

 </init-param>

 <init-param>

 <param-name>ServicePassword</param-name>

 <param-value>test</param-value>

 </init-param>

 <init-param>

 <param-name>ServiceAddress</param-name>

 <param-value>/services/AdministrationService</param-value>

 </init-param>

 <init-param>

 <param-name>ServicePort</param-name>

 <param-value>80</param-value>

 </init-param>

 <init-param>

 <param-name>ClusterHosts</param-name>

 <param-value>

 192.168.4.184

 </param-value>

 </init-param>

 <init-param>

 <param-name>SerialiseWebserviceSessions</param-name>

 <param-value>true</param-value>

 </init-param>

 <init-param>

 <param-name>CheckSumRows</param-name>

 <param-value>true</param-value>

 </init-param>

 <init-param>

 <param-name>EncryptSessionId</param-name>

 <param-value>true</param-value>

 </init-param>

 <init-param>

 <param-name>EncryptSessionData</param-name>

 <param-value>true</param-value>

 </init-param>

 <load-on-startup>11</load-on-startup>

</servlet>

mailto:admin@yellowfin.com.au

The following properties outline the options in the ClusterManagement servlet definition.

Property Value

ClusterType Either DYNAMIC or LEGACY. DYNAMIC will us multicast messaging

and automatically find other nodes in the cluster. LEGACY is the

default, and will use webservices to communicate with a defined

list of cluster nodes.

BroadcastConfiguration A JGroups configuration file. This allows you to configure cluster

messaging to work in environments where multicast networking

is not available. This is for DYNAMIC mode only and is optional.

By default, JGroups will use the configuration defined in udp.xml.

ServiceUser User that will validate the webservice connection to other nodes.

For LEGACY mode only.

ServicePassword Password for the ServiceUser. For LEGACY mode only.

ServicePasswordEncrypted True/False.

Is the contents of the ServicePassword encrypted.

ServiceAddress Address of the Yellowfin webservice. For LEGACY mode only.

ServicePort Port on which Yellowfin is running. For LEGACY mode only.

ClusterHosts This is a comma-seperated list of all nodes in the Cluster. These

can include IP addresses or hostnames. For LEGACY mode only.

SerialiseWebserviceSessi

ons

True/False.

This is required if using Single Sign-On on the Cluster. It can

serialise tokens to the database so that the token can be

accessed from any node.

CheckSumRows True/False.

Security option to check sum the serialised webservice session

records in the database. This helps prevent modification to the

table which could lead to the creation of unauthorised sessions

in Yellowfin.

EncryptSessionId True/False.

Security option to encrypt the serialised webservice session id in

the database. This helps prevent modification to the table which

could lead to the creation of unauthorised sessions in Yellowfin.

EncryptSessionData True/False.

Security option to encrypt the serialised webservice session

records in the database. This helps prevent modification to

the table which could lead to the creation

of unauthorised sessions in Yellowfin.

Each Yellowfin node will be configured by default to run background tasks, which includes the

broadcasting of reports. This potentially could send reports multiple times to end users. Because

of this it is recommended that background tasks be enabled on one node only.

Disable the background system tasks by removing (or commenting-out) the following XML block

from the web.xml. This will disable system tasks, like Group Flattening, LDAP synchronization,

Event Archiving, Document Cleanup and Average Run time calculations.

<servlet>

 <servlet-name>SystemTaskManager</servlet-name>

 <servlet-class>com.hof.servlet.SystemTaskManager</servlet-class>

 <load-on-startup>8</load-on-startup>

</servlet>

Disable the task scheduler by adding the following to the web.xml file, inside the MIStartup Servlet

block.

This will disable all tasks visible in the Task Schedule menu within the Yellowfin interface. This

includes broadcasting, populating cached filters, scheduled reports and populating cached views.

<init-param>

 <param-name>DisableTaskScheduler</param-name>

 <param-value>TRUE</param-value>

</init-param>

Container Level Session Replication allows Yellowfin to be deployed in a fail-safe environment

where in the event of a node in the cluster failing, a currently connected Yellowfin user can

continue their session on another node. This is achieved with Session Replication at the

Application Server level, and is not a function of Yellowfin itself, and hence is not a supported

component of Yellowfin. This configuration also requires a load-balancer to evenly distribute

incoming requests to different cluster nodes, which will not be addressed in this guide.

Different Application Servers may have different ways of implementing this functionality. This

example is shown using Tomcat, which is shipped with Yellowfin.

Setting up session replication consists of the following steps:

1. Modifications to web.xml

2. Modifications to server.xml

3. Modifications to ROOT.xml

More information regarding Tomcat Session Replication can be found at http://tomcat.apache.org

There are several caveats to using Session Replication with Yellowfin (or any Java web

application). The two main downsides of this are Session Replication overhead, and memory

usage.

There is additional overhead in replicating each session to all nodes in the cluster. This happens

after each user's request, and by default, only the changed session elements are copied to other

nodes. This means all nodes will be doing additional work each time a user does something on any

connect node.

The function of Session Replication is to replicate a user's memory footprint on the server, to all

nodes in the cluster. This means the sessions for all users in the cluster will be stored on each

node, taking up additional memory. Expanding the cluster with additional nodes is then restricted

by the amount of memory that each node has.

It should be considered if this overhead is worth the added fail-safe functionality that it brings. If

Session Replication is not used, and a node fails, a user’s session will be destroyed, but they'll be

able to login to another node to continue their work.

The text “<distributable/>” needs to be added to the web.xml file on each node underneath the

“<webapp>” line.

<web-app>

 <distributable/>

 <!-- System Event and Debug classes -->

 <listener>

 <listener-class>com.hof.servlet.SysSessionListener</listener-class>

 </listener>

Significant changes need to be made to the server.xml file in the Yellowfin/appserver/conf

directory.

Firstly, an addition must be made to the “<engine>” node in the xml.

Change from:

<Engine name="Catalina" defaultHost="localhost" >

To:

<Engine name="Catalina" defaultHost="localhost" jvmRoute="node01">

The jvmRoute value must be different for each node. In this example the number behind the word

“node” is incremented for each additional node.

Secondly, an additional XML entry must be made within the “<host>” XML block.

Add:

<Cluster className="org.apache.catalina.cluster.tcp.SimpleTcpCluster"

managerClassName="org.apache.catalina.cluster.session.DeltaManager"

expireSessionsOnShutdown="false" useDirtyFlag="true"

notifyListenersOnReplication="true">

 <Membership className="org.apache.catalina.cluster.mcast.McastService"

 mcastAddr="228.0.0.4"

 mcastPort="45564"

 mcastFrequency="500"

 mcastDropTime="3000"/>

 <Receiver className="org.apache.catalina.cluster.tcp.ReplicationListener"

 tcpListenAddress="192.168.4.199"

 tcpListenPort="4001"

 tcpSelectorTimeout="100"

 tcpThreadCount="6"/>

 <Sender className="org.apache.catalina.cluster.tcp.ReplicationTransmitter"

 replicationMode="pooled"

 ackTimeout="15000"

 waitForAck="true"/>

 <Valve className="org.apache.catalina.cluster.tcp.ReplicationValve"

 filter=".*\.gif;.*\.js;.*\.jpg;.*\.png;.*\.htm;.* \.html;.*\.css;.*\.txt;"/>

 <Deployer

className="org.apache.catalina.cluster.deploy.FarmWarDeployer"

 tempDir="/tmp/war-temp/"

 deployDir="/tmp/war-deploy/"

 watchDir="/tmp/war-listen/"

 watchEnabled="false"/>

 <ClusterListener

 className="org.apache.catalina.cluster.session.ClusterSessionListener" />

</Cluster>

The IP address “192.168.4.199” should be replaced with the address of the network interface that

is to receive session replication messages.

The IP address “228.0.0.4” is a multicast address that session replication messages will be

received on. This does not need to be modified, but a linux/unix server may need to register a valid

multicast route to receive broadcasts on this address. This can be done by running the following

command on the console:

sudo route add -net 224.0.0.0 netmask 224.0.0.0 dev eth0

This syntax may be different for different flavours of linux / unix. This example uses “eth0” as the

network device that will be used for this route.

Remove the lines from the ROOT.xml in the Yellowfin/appserver/conf/Catalina/localhost directory:

<Manager className="org.apache.catalina.session.PersistentManager" debug="0"

distributable="false" saveOnRestart="false">

 <Store className="org.apache.catalina.session.FileStore" />

</Manager>

These lines were previously added to suppress session serialisation to disk in Yellowfin.

